Skip to main content

Celebrating Women’s History Month: Women in Biology Meet Barbara McClintock

In honor of Women's History Month, it is fitting to pay tribute to the woman who is
considered one of the greatest biologists of the twentieth century! Barbara McClintock (1902–1992) was an American scientist and cytogeneticist who focused on color mosaicism in maize, or corn, during the 1940s. She was awarded the Nobel Prize in Physiology or Medicine in 1983 for her groundbreaking work describing the ability of DNA to move between locations within the genome (she is the only woman to receive an unshared Nobel Prize in that category).
She created the first genetic map for corn and also discovered transposons—mobile genetic elements that tend to move (or “jump”) between locations in the genome. Her work with corn introduced the scientific world to some radical new ideas has had a significant impact on our modern-day understanding of genetics, and paved the way for our understanding of the genome!
McClintock’s work with corn demonstrated that transposable elements in our DNA could naturally be broken and moved. For much of the 20th century, scientists believed an organism’s DNA was permanently fixed in its order and only changed through isolated mutations. While not every segment of DNA can “jump,” many regions can, and because of her work, scientists have since found almost half of the human genome is made up of these transposable elements!
Barbara McClintock also introduced the thought that jumping genes could affect the activity and function of other genes. She found a gene could potentially jump into the middle of another gene, causing it to function differently. This helped scientists better understand human genetics, including helping to discover how diseases, such as hemophilia, develop. Think of your DNA as a recipe book. Now imagine you took a sentence from a car repair manual and pasted it into the middle of a lasagna recipe. If you followed the new recipe step by step, your lasagna likely wouldn’t come out right.
McClintock was the first woman to be president of the Genetics Society of America, the third woman to be elected to the National Academy of Sciences, and the third woman to win the Nobel prize in Physiology or Medicine. She embodied the idea that science should have no boundaries—if you are curious, then you can be a scientist!

Your students can explore DNA with these fantastic hands-on RAFT ideas:


By Jeanne Lazzarini, RAFT Math Master Educator/Curriculum Writerx

Comments

Popular posts from this blog

Science fairs: Nurturing the 21st century thinker

3D Tessellation model A bespectacled 6th grader enthusiastically explains ‘efficiency of 3D space tessellations’ with myriad equations and handmade tessellation patterns to address the needs of the packaging, storing, shipping and construction industry. Another middle school student, was inspired by his little brother’s telescope and built a simple vacuum chamber using a PVC pipe with a microphone and a speaker on both ends to find out how sound travels on Mars! This 8th grader from Granada Islamic School used an oscilloscope his mother found at an auction to measure the sounds. “I poke around and find junk to build my projects. It’s fun.” Science projects today have become fun for many students as they use more hands on activities to experiment and understand concepts. These two middle school students were among 996 participants at the recent Synopsys Silicon Valley Science and Technology Championship , where RAFT was one of the special judges. Moenes Iskarous, President, S...

Plastic to art that’s fantastic!

With Valentine’s Day round the corner, one of RAFT ’s upcoming weekend workshops – ‘Shrink Art Fun’ shows you how to recycle plastic into awesome shrink art! This year learn how to make some meaningful gifts using donated plastic material, available at RAFT in the form of trays and take-out containers, thus preventing them from ending up in a landfill.  Shrink plastics encourage creativity, and can be used to supplement a variety of classroom activities.  Students can create models, manipulatives, and displays. They can make maps, pins, book report characters, and even cards!  But there is also a science behind this hands on art form! Says Instructor Georgina Patterson, who has been in the education field for 40 years, “The science behind the shrinkage process is a chemistry lesson in itself, and the excitement young children get when they watch the plastic change size in the oven is worth the effort!” The base material consists of thin, flexible polystyrene plast...

Turn Daylight Savings Time into a Teachable Moment

Don’t lose sleep over this, but Daylight Savings Time (DST) is here! On March 11th it's time to set your clocks forward and say goodbye to one hour of sleep! There’s no time to waste! Make this year’s Daylight Savings Time an engaging and meaningful experience for you and your students. RAFT has plenty of ideas to help you and your students get ready for DST:  “ Time for Shadows ” shows you how to quickly assemble an equatorial sundial that you can quickly adjust for daylight savings time! Learn about sun positions and shadows with drinking straws, a protractor, a compass, and a CD! Use a view binder cover, a watch, a paperclip, straws, the compass, and other easily accessible resources to create a “ View Binder Sundial ” similar to the one our forefathers used to tell time before clocks were invented! Create a sand timer (based on the concept of an hourglass), and learn how to measure time with “Sand Timer Primer.” Why do we have Daylight Savings Time?...